Distance-Based Image Classification: Generalizing to New Classes at Near-Zero Cost
نویسندگان
چکیده
منابع مشابه
Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost
We are interested in large-scale image classification and especially in the setting where images corresponding to new or existing classes are continuously added to the training set. Our goal is to devise classifiers which can incorporate such images and classes on-the-fly at (near) zero cost. We cast this problem into one of learning a metric which is shared across all classes and explore k-nea...
متن کاملImage partition regularity near zero
Many of the classical results of Ramsey Theory are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over N and other subsemigroups of (R,+). We study several notions of image partition regularity near zero for both finite and infinite matrices, and establish relationships which must hold among these notions.
متن کاملDensity near zero
Let $S$ be a dense subsemigroup of $(0,+infty)$. In this paper, we state definition of thick near zero, and also we will introduce a definition that is equivalent to the definition of piecewise syndetic near zero which presented by Hindman and Leader in [6]. We define density near zero for subsets of $S$ by a collection of nonempty finite subsets of $S$ and we investigate the conditions un...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولImage-to-Class Distance Metric Learning for Image Classification
Image-To-Class (I2C) distance is first used in Naive-Bayes Nearest-Neighbor (NBNN) classifier for image classification and has successfully handled datasets with large intra-class variances. However, the performance of this distance relies heavily on the large number of local features in the training set and test image, which need heavy computation cost for nearest-neighbor (NN) search in the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2013
ISSN: 0162-8828,2160-9292
DOI: 10.1109/tpami.2013.83